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Abstract
We study structural properties of trees grown by preferential attachment. In
this mechanism, nodes are added sequentially and attached to existing nodes
at a rate that is strictly proportional to the degree. We classify nodes by their
depth n, defined as the distance from the root of the tree, and find that the
network is strongly stratified. Most notably, the distribution f

(n)
k of nodes with

degree k at depth n has a power-law tail, f
(n)
k ∼ k−γ (n). The exponent grows

linearly with depth, γ (n) = 2 + n−1
〈n−1〉 , where the brackets denote an average

over all nodes. Therefore, nodes that are closer to the root are better connected,
and moreover, the degree distribution strongly varies with depth. Similarly,
the in-component size distribution has a power-law tail and the characteristic
exponent grows linearly with depth. Qualitatively, these behaviors extend to a
class of networks that grow by redirection.

PACS numbers: 89.75,Hc, 05.40.−a, 02.50.Ey, 05.20.Dd

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Unlike the ordered crystalline structure of solid-state matter [1], a wide array of natural
and man-made networks ranging from chemical reaction pathways and social groups to the
Internet and airline routes have a strongly heterogeneous structure [2–4]. The connectivity of
an element in such complex networks varies across multiple scales: most of the nodes have a
very small number of connections, but there is also a small number of highly connected hubs.

The degree distribution measures the connectivity in the network and is widely used to
characterize the structure of complex networks. This distribution uniformly samples all nodes
in the network. Yet, given the highly heterogeneous structure of complex networks, it is
plausible that different subsets of nodes have very different structural characteristics. In this
study, we show that the degree distribution strongly varies in a given network.

We focus on the basic preferential attachment mechanism [5, 6] which provides a useful
model of growing networks [7, 8]. The preferential attachment network, where nodes are added
sequentially and attached to existing nodes at a rate proportional to the degree, demonstrates
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how a ‘rich-gets-richer’ mechanism generates networks with highly connected nodes and with
a broad distribution of connectivities.

For the preferential attachment network, which has a tree topology, it is natural [9, 10] to
classify nodes by their depth n, defined as the distance from the root. This depth representation
divides the network into layers: the first layer includes nodes with depth n = 1, the second
layer includes nodes with depth n = 2, etc. Our main result is that the distribution f

(n)
k of

nodes with degree k at the nth layer has an algebraic tail with a depth-dependent exponent,

f
(n)
k ∼ k−γ (n), γ (n) = 2 +

n − 1

〈n − 1〉 . (1)

Interestingly, the exponent γ grows linearly with depth, and thus, nodes that are closer
to the root tend to be better connected. The degree distribution (1) matches the total degree
distribution, f total

k ∼ k−3, only at the average depth, n = 〈n〉. The tail of the degree distribution
is overpopulated with respect to the total distribution below the average depth and conversely,
the tail is underpopulated above the average depth. Therefore, the network is stratified. In
particular, the structure of the network changes with depth because the degree distribution is
not uniform across the network.

This qualitative behavior extends to other structural features of the network. In particular,
the in-component size distribution that measures the total number of nodes that emanate from
a given node has a very similar behavior: in any layer the distribution has an algebraic tail
and the corresponding exponent grows linearly with depth. Furthermore, the tail of the in-
component size distribution is shallow below the average depth but steep above the average
depth. We generalize these results to the broader class of redirection networks, and find similar
network structures.

The rest of this paper is organized as follows. We describe the preferential attachment
network and discuss the distribution of depth in section 2. We analyze the depth dependence of
the degree distribution and the in-component size distribution in sections 3 and 4, respectively.
We briefly discuss redirection networks in section 5 and conclude in section 6. The correction
to the leading asymptotic behavior in large but finite networks is derived in the appendix.

2. The preferential attachment network

In the preferential attachment model of network growth, nodes are added one at a time. Each
new node is linked to a target node that is selected with probability strictly proportional to the
degree. This attachment mechanism favors strongly connected nodes over weakly connected
ones. We assume that initially there is a single node, the root. Since each attachment event
adds one node and one link, the network maintains a tree topology.

We use link redirection [9] to emulate preferential attachment. In the redirection process,
following the addition of a new node, an existing node is selected at random. With probability
1
2 , the new node links to this randomly selected node, and with equal probability 1

2 , the new
node links to the parent of the selected node, as shown in figure 1. A node with degree k has
one outgoing link and k − 1 incoming links, and the total probability Pk of attachment to such
a node includes two contributions: the probability of a direct link is 1

2N
where N is the total

number of nodes while the probability of a redirected link is k−1
2N

. Thus, the total attachment
probability Pk = k

2N
is strictly proportional to the degree, and this link redirection process

is equivalent to preferential attachment. Redirection does not explicitly involve the degree
of a node, and is therefore convenient for both theoretical analysis and numerical simulation
[9, 11].
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1/2

1/2

Figure 1. Illustration of the redirection process. The new node, indicated by a bullet, links with
equal probabilities to a randomly selected node or to its parent.

n=2

n=1

n=0

Figure 2. Illustration of the layer structure. Indicated in the figure are the first three layers.

Let us label the nodes in the network by their depth n, defined as the distance from the
root. With this definition, nodes are grouped by layers: the first layer consists of nodes with
n = 1, the second layer consists of nodes with n = 2, etc, as illustrated in figure 2. As
a preliminary step, we evaluate Mn(N), the expected number of nodes at the nth layer in a
network with N nodes. This quantity obeys the difference equation

Mn(N + 1) − Mn(N) = Mn−1(N) + Mn(N)

2N
. (2)

The boundary condition is M0 = 1 because there is a single root. The first gain term on the
right-hand side accounts for direct links and the second term for redirected links. Also, the
right-hand side is inversely proportional to the total number of nodes. This difference equation
can be converted into a differential equation when the network is large, N � 1,

dMn

dN
= Mn−1 + Mn

2N
. (3)

Henceforth, the N-dependence is implicit. The number of nodes at the first layer, M1 ∼ N1/2,
follows from dM1/dN = M1/(2N) [9]. In general, the transformation Mn = M1mn reduces
equation (3) to dmn/dN = mn−1/(2N) with the boundary condition m1 = 1. Solving
this latter equation recursively yields m2 = 1

2 ln N , m3 = 1
2!

(
1
2 ln N

)2
, and in general,

mn = 1
(n−1)!

(
1
2 ln N

)n−1
. Therefore, the distribution of depth is

Mn ∼ N1/2

(
1
2 ln N

)n−1

(n − 1)!
. (4)

Accordingly, the distribution of the variable n − 1 is Poissonian and is fully characterized by
the average that grows logarithmically with the total number of nodes,

〈n − 1〉 � 1
2 ln N. (5)

Furthermore, the variance, σ 2 = 〈(n − 1)2〉 − 〈n − 1〉2, equals the average, σ 2 � 1
2 ln N .
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In principle, the Poisson depth distribution (4) is Gaussian in the vicinity of the average
depth. Specifically, the variable ξ = [(n − 1) − 〈n − 1〉]/σ obeys Gaussian statistics. In
practice, since the depth and the variance both grow logarithmically with the network size,
statistics of the depth are not fully captured by the Gaussian distribution even in very large
networks.

We measure the depth in units of the average using the normalized depth

y = n − 1

〈n − 1〉 . (6)

The average number of nodes with normalized depth y grows as a power-law with the total
number of nodes,

Mn ∼ Nν, ν = 1 + y − y ln y

2
. (7)

This result is obtained by substituting n− 1 = y

2 ln N into (4) and then evaluating the quantity
ln Mn � ν ln N using the Stirling formula, ln n! ∼ n ln n − n. As expected, the total number
of nodes at the average depth is proportional to the system size, ν(1) = 1, and the total
number of nodes at the first layer is consistent with (4), ν(0) = 1

2 . In general, the exponent
ν that characterizes the population of nodes at a given depth is continuously varying, and in
particular, this exponent vanishes at a nontrivial maximal depth, ymax = 3.591 12, specified
as the root of the equation 1 + ymax = ymax ln ymax. Therefore, there are no nodes with depth
larger than this maximal depth, 0 � y � ymax.

3. The degree distribution

We now discuss the unnormalized degree distribution, F
(n)
k , defined as the average number of

nodes with depth n and degree k. We begin with the first layer, n = 1, where the quantity F
(1)
k

obeys the rate equation

dF
(1)
k

dN
= (k − 1)F

(1)
k−1 − kF

(1)
k

2N
+

M0 + M1

2N
δk,1. (8)

Throughout this study, we assume that the network is large and treat N as a continuous variable.
In other words, we use rate equations as in (3) rather than difference equations as in (2). The
first two gain terms on the right-hand side account for augmentation in the degree of an existing
node due to attachment, and the corresponding rate of attachment to nodes with degree k equals
the attachment probability Pk = k

2N
. The last two gain terms, accounting respectively for

redirected links and direct links, correspond to the new nodes.
We now introduce the degree distribution f

(1)
k , the fraction of first layer nodes with degree

k, defined by

F
(1)
k = M1f

(1)
k . (9)

This distribution is normalized,
∑

k f
(1)
k = 1. With definition (9), the evolution equation (8)

becomes

M0 + M1

2N
f

(1)
k = M1

(k − 1)f
(1)
k−1 − kf

(1)
k

2N
+

M0 + M1

2N
δk,1.

In writing this equation, we kept the rate of change of the total number of nodes in the first
layer dM1/dN given by (3), but neglected the sub-dominant N-dependence of the normalized
degree distribution df

(1)
k /dN . The number of nodes at the zeroth layer, M0 = 1, is negligible
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compared with the number of nodes at the first layer, M0 � M1, and as a result, the degree
distribution f

(1)
k obeys the simple recursion equation

(k + 1)f
(1)
k = (k − 1)f

(1)
k−1 + δk,1. (10)

Hence, the degree distribution is f
(1)
k = 1

1·2 , 1
2·3 , 1

3·4 for k = 1, 2, 3, and in general, this
quantity is remarkably simple,

f
(1)
k = 1

k(k + 1)
. (11)

This distribution is properly normalized,
∑

k f
(1)
k = 1. Interestingly, the tail of the normalized

degree distribution, f
(1)
k ∼ k−2 is overpopulated with respect to that of the total degree

distribution, f total
k ∼ k−3 [6–8]. Nevertheless, the expected number of nodes with degree k at

the first layer, F
(1)
k ∼ N1/2k−2, remains smaller than the total number of nodes with degree

k, F tot
k ∼ Nk−3, because the maximal degree in the network is bounded, k � N1/2. The

maximal degree in the network, kmax ∼ N1/2, is estimated by equating the cumulative degree
distribution Qk = ∑

j�k F tot
j ∼ Nk−2 to 1, Qk ∼ 1. Equation (11) clearly shows that nodes

at the first layer tend to be much more connected compared with the rest of the network.
The equation governing F

(n)
k , the average number of nodes with degree k at the nth layer,

is given by a straightforward generalization of (8),

dF
(n)
k

dN
= (k − 1)F

(n)
k−1 − kF

(n)
k

2N
+

Mn−1 + Mn

2N
δk,1. (12)

Following the steps leading to (10), the degree distribution, f
(n)
k , defined as in (9),

F
(n)
k = Mnf

(n)
k , obeys the recursion equation

(k + 1 + y)f
(n)
k = (k − 1)f

(n)
k−1 + (1 + y)δk,1 (13)

with the shorthand notation y = Mn−1/Mn. The parameter y is equivalent to the normalized
depth defined in (6). The degree distribution follows immediately from the recursion
equation (13). First, the fraction of leafs is f

(n)
1 = (1 + y)(2 + y). Second, using the

ratio f
(n)
k

/
f

(n)
k−1 = (k − 1)(k + 1 + y) and the following property of the Gamma function,

�(x + 1)/�(x) = x, we express the degree distribution in a closed form in terms of the
Gamma function,

f
(n)
k = (1 + y)

�(2 + y)�(k)

�(k + 2 + y)
. (14)

Therefore, there is a family of degree distributions, parameterized by the normalized
depth y. From the well-known asymptotic behavior of the ratio of Gamma functions,
limx→∞[xa�(x)/�(x + a)] = 1, we find that the degree distribution has a power-law tail,

f
(n)
k � Ak−γ (n) (15)

for k � 1. The characteristic exponent γ = 2 + y grows linearly with depth

γ (n) = 2 +
n − 1

〈n − 1〉 , (16)

and the prefactor is A = (1 + y) �(2 + y). The power-law behavior (15) strictly holds only
for infinitely large networks. The appendix describes the correction to this leading asymptotic
behavior in large but finite networks.

As shown in figure 3, the degree distribution is not uniform across the network and the
characteristic exponent γ (n) increases linearly with depth n. Therefore, nodes that are closer
to the root tend to have a larger number of connections. The tail of the degree distribution
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Figure 3. The degree distribution at different depths. Shown is the closed form expression (14)
for five, equally spaced, values of the normalized depth y defined in (6).

is overpopulated with respect to the total degree distribution below the average depth as
γ < 3 for n < 〈n〉. Similarly, the tail is underpopulated with respect to the total degree
distribution above the average depth, γ > 3 for n > 〈n〉. The degree distribution at the
average depth equals the total degree distribution f

(〈n〉)
k = f total

k = 4/[k(k + 1)(k + 2)] because
the depth distribution (4) gradually narrows around the average depth (5) as the network grows.
Nevertheless, there is still an appreciable number of nodes at depths other than the average,
as indicated by the power-law growth in (7). Finally, we note that since the depth is bounded
by the maximum value ymax = 3.591 12, the characteristic exponent has a nontrivial upper
bound, 2 � γ � 5.591 12.

4. The in-component size distribution

Each node is in itself a root of the sub-tree that emanates from it. This sub-tree is termed the
in-component of the node and we denote by s the size of the in-component. We note that the
size of the in-component is at least as large as the degree of the node: s � k. The minimal size
s = 1 corresponds to dangling nodes without descendants. Let G(n)

s be the average number of
nth layer nodes with in-components of size s. This quantity satisfies the rate equation

dG(n)
s

dN
=

(
s − 3

2

)
G

(n)
s−1 − (

s − 1
2

)
G(n)

s

N
+

Mn−1 + Mn

2N
δs,1.

With probability s
N

a node in an in-component of size s is selected at random following the
addition of a new node, and all such events, with the exception of redirection away from the
root of the sub-tree, result in attachment of an additional node to the in-component. Since
redirection away from the root of the sub-tree occurs with probability 1

2N
, the probability of

attaching an additional node to the in-component equals s−1/2
N

, and hence, the first two terms
on the right-hand side. The last two terms are as in (12).

The normalized distribution g(n)
s of nodes with in-degree s and depth n, defined by

G(n)
s = Mn g(n)

s , obeys the recursion equation

(
s +

y

2

)
g(n)

s =
(

s − 3

2

)
g

(n)
s−1 +

1 + y

2
δs,1. (17)
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Figure 4. The in-component size distribution at different depths. Shown is the closed form
expression (18) for y = 0, 1/2, 1, 3/2, 2.

This equation is very similar in structure to equation (13) governing the degree distribution.
Dangling nodes have s = k = 1 and therefore, g

(n)
1 = f

(n)
1 = (1 + y)(2 + y). Using the ratio

g(n)
s

/
g

(n)
s−1 = (s − 3/2)/(s + y/2), we obtain the in-component size distribution in closed form

g(n)
s = 1 + y

2 + y

�
(
2 + y

2

)
�

(
1
2

) �
(
s − 1

2

)
�

(
s + 1 + y

2

) . (18)

Again, there is a family of distributions that is governed by y. Therefore, the in-component
size distribution has a power-law tail

G(n)
s � Bs−β(n) (19)

and the characteristic exponent varies continuously with depth, β = (3 + y)/2 or

β(n) = 3

2
+

1

2

n − 1

〈n − 1〉 . (20)

The prefactor in (19) is B = (1 + y)�(1 + y/2)/
√

4π .
The in-component size distribution is very similar to the degree distribution (figure 4).

Nodes that are closer to the root tend to have larger in-components. The tail of the in-component
size distribution is overpopulated below the average depth, β < 2 when n < 〈n〉, while the
tail is underpopulated above the average depth, β > 2 for n > 〈n〉. The in-component size
distribution matches the total distribution at the average depth, G(〈n〉)

s = Gtotal
s = 2 [4s2 −1]−1.

Moreover, the in-component size distribution is steepest, βmax = 4.295 56, at the maximal
depth ymax = 5.591 12.

For completeness, we also quote the in-component size distribution in the first layer,

g(1)
s = 1√

4π

�
(
s − 1

2

)
�(s + 1)

, (21)

and the corresponding tail, g(1)
s ∼ s−3/2.

5. Redirection networks

We briefly discuss the broader class of redirection networks [9]. This family of networks is
also grown by sequential addition of nodes. Subsequent to the addition of a new node, one
existing node is selected at random. With the redirection probability r, the new node attaches

7
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to the parent of the randomly selected node while with the complementary probability 1 − r ,
the new node attaches to the randomly selected node itself. Redirection networks are therefore
parameterized by the redirection probability r. The probability Pk of attachment to a node of
degree k varies linearly with the degree, Pk = (k − 1)r + (1 − r) or equivalently,

Pk = kr + 1 − 2r

N
. (22)

As mentioned above, the special case r = 1/2 yields the preferential attachment network. The
limiting case r = 0 corresponds to the random recursive tree where the attachment probability
is uniform [12–18].

The depth distribution obeys the following generalization of (3)

dMn

dN
= (1 − r)Mn−1 + rMn

N
. (23)

Here, the first gain term accounts for direct links and the second term, for redirected links.
The depth distribution is always Poissonian

Mn ∼ Nr [(1 − r) ln N ]n−1

(n − 1)!
(24)

and fully characterized by the average 〈n − 1〉 � (1 − r) ln N .
The degree distribution is obtained by replacing the attachment probability Pk = k

2N
in

(12) with (22). We skip the straightforward derivation of the degree distribution and merely
quote the final result,

f
(n)
k = r + y − ry

1 + y − ry

�
( 1+r+y−ry

r

)
�

(
1−r
r

) �
(
k + 1−2r

r

)
�

(
k + 1+y−ry

r

) . (25)

The parameter y is the same normalized depth (6) with the appropriate average 〈n − 1〉 �
(1 − r) ln N . Therefore, the degree distribution decays algebraically as in (15) with the
exponent γ = 2 + [(1 − r)y]/r or equivalently

γ (n) = 2 +
1 − r

r

n − 1

〈n − 1〉 . (26)

The in-component size distribution

g(n)
s = r + y − ry

1 + y − ry

�(2 + y − ry)

�(1 − r)

�(s − r)

�(s + 1 + y − ry)
(27)

is obtained by replacing the attachment probability s−1/2
N

in (17) with s−r
N

. As expected, this
distribution decays algebraically as in (19) with the exponent

β(n) = 1 + r + (1 − r)
n − 1

〈n − 1〉 . (28)

There is no substantive change in the behaviors of the degree distribution and the in-
component size distribution. These distributions are characterized by power-law tails that
become steeper with increasing depth, so that the further from the root a node is, the less
likely that the node is highly connected. Generally, the degree distribution is non-uniform
throughout the network.

6. Conclusions

In conclusion, we studied how the degree distribution depends on depth, defined as the distance
from the root, in the preferential attachment network and found that the network is strongly

8
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stratified. There is a family of degree distributions that is parameterized by the depth and
the total degree distribution is a special case that corresponds to the behavior at the average
depth. The degree distribution has a shallow power-law tail below the average depth, and a
steep tail above the average depth as the characteristic exponent grows linearly with depth.
Interestingly, this exponent has a non-trivial upper bound. The in-component size distribution
exhibits very similar qualitative behaviors.

The structure of the network changes considerably with the depth as nodes that are closer
to the root tend to have a larger number of connections. Such stratification is empirically
observed in complex networks including the Internet [19], and can be intuitively understood
as follows. There are strong correlations between the depth of a node and its age because
young nodes must be less connected. Since younger nodes are also further from the root, there
are correlations between the degree and the depth. A natural complementary classification of
the nodes is by their age, and we anticipate that similarly, the degree distribution exhibits age
dependence.

The above results are not limited to trees. This is seen from a generalization of the
preferential attachment process where new nodes attach to two nodes: one target node that is
selected with probability proportional to its degree and one, randomly selected, parent of the
target node. Thus, each new node adds a three-node cycle, and the network has at least as
many cycles as there are nodes. Yet, the governing equations do not change and the behavior
of the degree distribution and in-component size distribution are basically, the same [20].

One issue, open to further investigations, is the behavior in finite systems. The analysis in
the appendix relies on the continuum approximation. Yet, this approximation is asymptotically
exact for degrees that are much smaller than the maximal one. A discrete approach with
difference equations, rather than differential ones, is necessary [21–23] to determine the
behavior for the degrees that are of the order of the maximal degree.
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Appendix. Finite networks

Throughout this investigation, we implicitly considered the leading asymptotic behavior
for large networks. In particular, the sub-dominant dependence of the normalized degree
distribution on the size of the network was ignored in (13). However, the logarithmic
dependences of the average depth and the variance suggest that extremely large networks
may be needed to clearly observe the large-N asymptotics (15).

To investigate how the degree distribution depends on the total number of nodes N, we
rewrite the governing equation (12) in continuum form for large k,

∂F

∂N
+

1

2N

∂

∂k
(kF ) = 0. (A.1)

In deriving this equation, we omitted the superscript and the subscript, F ≡ F
(n)
k . We now

include the term ∂f/∂N describing how the degree distribution changes with system size in
the evolution equation for the normalized distribution, defined by F = Mf ,

2N
∂f

∂N
+ k

∂f

∂k
+ (2 + y)f = 0. (A.2)

9
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The normalized depth (6) is y = 2(n − 1)/ ln N and therefore, dy/dN = −y/(N ln N).
We now assume that the power-law tail (15) is modified by a correction, f (k,N) �
Ak−(2+y)u(k,N). From (A.2), the correction function u satisfies

∂u

∂k
+ 2y

ln k

k ln N
u = 0. (A.3)

Therefore, the correction function is log-normal, u = exp[−2y(ln k)2/ ln N ], and the
normalized distribution has the following tail

f
(n)
k � Ak−2−y exp

[
−2y

(ln k)2

ln N

]
. (A.4)

Indeed, the correction is irrelevant for infinitely large networks: u → 1 when N → ∞. For
large but finite systems, there are two consequences. First, at moderate degrees, the correction
is sub-dominant and the tail is power-law, although the exponent may appear slightly larger
than the asymptotic value (16). Second, at large degrees, the correction is dominant and the
tail is log-normal.
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